On c-supplemented subgroups of finite groups
نویسندگان
چکیده
منابع مشابه
The nc-supplemented subgroups of finite groups
A subgroup $H$ is said to be $nc$-supplemented in a group $G$ if there exists a subgroup $Kleq G$ such that $HKlhd G$ and $Hcap K$ is contained in $H_{G}$, the core of $H$ in $G$. We characterize the supersolubility of finite groups $G$ with that every maximal subgroup of the Sylow subgroups is $nc$-supplemented in $G$.
متن کاملON c-SUPPLEMENTED MAXIMAL AND MINIMAL SUBGROUPS OF SYLOW SUBGROUPS OF FINITE GROUPS
This paper proves: Let F be a saturated formation containing U . Suppose that G is a group with a normal subgroup H such that G/H ∈ F . (1) If all maximal subgroups of any Sylow subgroup of F ∗(H) are c-supplemented in G, then G ∈ F ; (2) If all minimal subgroups and all cyclic subgroups with order 4 of F ∗(H) are c-supplemented in G, then G ∈ F .
متن کاملthe nc-supplemented subgroups of finite groups
a subgroup $h$ is said to be $nc$-supplemented in a group $g$ if there exists a subgroup $kleq g$ such that $hklhd g$ and $hcap k$ is contained in $h_{g}$, the core of $h$ in $g$. we characterize the supersolubility of finite groups $g$ with that every maximal subgroup of the sylow subgroups is $nc$-supplemented in $g$.
متن کاملClassifying fuzzy normal subgroups of finite groups
In this paper a first step in classifying the fuzzy normalsubgroups of a finite group is made. Explicit formulas for thenumber of distinct fuzzy normal subgroups are obtained in theparticular cases of symmetric groups and dihedral groups.
متن کاملCLASSIFYING FUZZY SUBGROUPS OF FINITE NONABELIAN GROUPS
In this paper a rst step in classifying the fuzzy subgroups of a nite nonabelian group is made. We develop a general method to count the number of distinct fuzzy subgroups of such groups. Explicit formulas are obtained in the particular case of dihedral groups.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2012
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2012.03.041